When first learning to sketch a graph of f^{\prime} given the graph of f,
if you try to do it completely intuitively, it is common to accidentally sketch the graph of f shifted up or down instead.
The following process breaks down the steps of sketching f^{\prime} in a more structured way.
[1] Identify all x-coordinates on the graph of f where there is
a horizontal tangent line
so $f^{\prime}=0$
a discontinuity, a cusp or a vertical tangent line
so f^{\prime} does not exist
[2] Identify all x-coordinates on the graph of f where the graph is the steepest or flattest in that neighborhood
[3] On a number line, mark all x-values from [1] and [2]
At each x-value from [1] where
f has a horizontal tangent line
draw a dot on the number line
f has a vertical tangent line or infinite discontinuity
draw a vertical asymptote
f has a discontinuity or cusp
indicate that there is no corresponding point on the graph of f^{\prime}
[4] For each subinterval of the number line in [3],
label whether
f is increasing
so $f^{\prime}>0$
f is decreasing
so $f^{\prime}<0$
f is horizontal
so $f^{\prime}=0$
Also, label whether f is getting steeper
so f^{\prime} is getting larger in size
f is getting flatter
so f^{\prime} is getting smaller in size
f is straight
so f^{\prime} is not changing
[5] For each subinterval of the number line in [3], sketch a piece of the graph of f^{\prime} such that
if $f^{\prime}>0$, the graph of f^{\prime} is ___ the number line
if $f^{\prime}<0$,
if $f^{\prime}=0$,
the graph of f^{\prime} is \qquad the number line
if f^{\prime} does not exist, the graph of f^{\prime} is \qquad the number line the graph of f^{\prime} has a \qquad
if f has a vertical tangent line or infinite discontinuity
the graph of f^{\prime} has a \qquad
if f has a discontinuity or a cusp without a vertical tangent line or infinite discontinuity
if f^{\prime} is large in size,
if f^{\prime} is small in size,
if f^{\prime} is getting larger in size,
the graph of f^{\prime} is \qquad the number line
the graph of f^{\prime} is \qquad the number line
the graph of f^{\prime} is moving \qquad the number line
if f^{\prime} is getting smaller in size,
if f^{\prime} is not changing,
the graph of f^{\prime} is moving \qquad the number line the graph of f^{\prime} is \qquad
[6] At each x-value in [3] where f^{\prime} exists join up the pieces of f^{\prime} on the left and right sides of that x-value paying attention if $f^{\prime}=0$ at that x-value

At each x-value in [3] where f^{\prime} does not exist due to a jump or removable discontinuity
if the graph of f has the same slope as it approaches that x-value from the left and from the right join up the pieces of f^{\prime} on the left and right sides of that x-value to meet at \qquad if the graph of f has different slopes as it approaches that x-value from the left and from the right pay attention to which side of f is steeper

