Given a graph of f , how do you sketch a graph of $f^\prime\,$?

When first learning to sketch a graph of f' given the graph of f, if you try to do it completely intuitively, it is common to accidentally sketch the graph of f shifted up or down instead.

The following process breaks down the steps of sketching f' in a more structured way.

- [1] Identify all x coordinates on the graph of f where there is a horizontal tangent line so f' = 0
 a discontinuity, a cusp or a vertical tangent line so f' does not exist
- [2] Identify all x coordinates on the graph of f where the graph is the steepest or flattest in that neighborhood
- [3] On a number line, mark all x values from [1] and [2]

At each x – value from [1] where

f has a horizontal tangent line

draw a dot on the number line

f has a vertical tangent line or infinite discontinuity

draw a vertical asymptote

f has a discontinuity or cusp

indicate that there is no corresponding point on the graph of f'

[4] For each subinterval of the number line in [3], label whether

f is increasing so f' > 0f is decreasing so f' < 0f is horizontal so f' = 0

Also, label whether

f is getting steeper so f' is getting larger in size f is getting flatter so f' is getting smaller in size f is straight so f' is not changing

For each subinterval of the number line in [3], [5] sketch a piece of the graph of f' such that

if $f' > 0$,	the graph of f' is the number line	
if $f' < 0$,	the graph of f' is the number line	
if $f' = 0$,	the graph of f' is the number line	
if f' does not exist,	the graph of f' has a if f has a vertical tangent line or infinite discontinuity the graph of f' has a if f has a discontinuity or a cusp without a vertical tangent line or infinite discontinuity	
if f' is large in size,	the graph of f' is	_ the number line
if f' is small in size,	the graph of f' is	_ the number line
if f' is getting larger in size,	the graph of f' is moving	the number line
if f' is getting smaller in size,	the graph of f' is moving	the number line
if f' is not changing,	the graph of f' is	_
At each x – value in [3] where f' e	xists	

[6]

join up the pieces of f' on the left and right sides of that x – value paying attention if f' = 0 at that x – value

At each x – value in [3] where f' does not exist due to a jump or removable discontinuity if the graph of f has the same slope as it approaches that x – value from the left and from the right join up the pieces of f' on the left and right sides of that x – value to meet at if the graph of f has different slopes as it approaches that x – value from the left and from the right pay attention to which side of f is steeper